婷婷超碰在线在线看a片网站|中国黄色电影一级片现场直播|欧美色欧美另类少妇|日韩精品性爱亚洲一级性爱|五月天婷婷乱轮网站|久久嫩草91婷婷操在线|日日影院永久免费高清版|一级日韩,一级鸥美A级|日韩AV无码一区小说|精品一级黄色毛片

首頁 > 文章中心 > 向心加速度

向心加速度

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇向心加速度范文,相信會(huì)為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。

向心加速度范文第1篇

知識(shí)目標(biāo)

1、知道什么是向心力,什么是向心加速度,理解勻速圓周運(yùn)動(dòng)的向心力和向心加速度大小不變,方向總是指向圓心.

2、知道勻速圓周運(yùn)動(dòng)的向心力和向心加速度的公式,會(huì)解答有關(guān)問題.

能力目標(biāo)

培養(yǎng)學(xué)生探究物理問題的習(xí)慣,訓(xùn)練學(xué)生觀察實(shí)驗(yàn)的能力和分析綜合能力.

情感目標(biāo)

培養(yǎng)學(xué)生對(duì)現(xiàn)象的觀察、分析能力,會(huì)將所學(xué)知識(shí)應(yīng)用到實(shí)際中去.

教學(xué)建議

教材分析

教材先講向心力,后講向心加速度,回避了用矢量推導(dǎo)向心加速度這個(gè)難點(diǎn),通過實(shí)例給出向心力概念,再通過探究性實(shí)驗(yàn)給出向心力公式,之后直接應(yīng)用牛頓第二定律得出向心加速度的表達(dá)式,順理成章,便于學(xué)生接受.

教法建議

1、要通過對(duì)物體做圓周運(yùn)動(dòng)的實(shí)例進(jìn)行分析入手,從中引導(dǎo)啟發(fā)學(xué)生認(rèn)識(shí)到:做圓周運(yùn)動(dòng)的物體都必須受到指向圓心的力的作用,由此引入向心力的概念.

2、對(duì)于向心力概念的認(rèn)識(shí)和理解,應(yīng)注意以下三點(diǎn):

第一點(diǎn)是向心力只是根據(jù)力的方向指向圓心這一特點(diǎn)而命名的,或者說是根據(jù)力的作用效果來命名的,并不是根據(jù)力的性質(zhì)命名的,所以不能把向心力看做是一種特殊性質(zhì)的力.

第二點(diǎn)是物體做勻速圓周運(yùn)動(dòng)時(shí),所需的向心力就是物體受到的合外力.

第三點(diǎn)是向心力的作用效果只是改變線速度的方向.

3、讓學(xué)生充分討論向心力大小,可能與哪些因素有關(guān)?并設(shè)計(jì)實(shí)驗(yàn)進(jìn)行探究活動(dòng).

4、講述向心加速度公式時(shí),不僅要使學(xué)生認(rèn)識(shí)到勻速圓周運(yùn)動(dòng)是向心加速度大小不變,向心加速度方向始終與線速度垂直并指向圓心的變速運(yùn)動(dòng),在這里還應(yīng)把“向心力改變速度方向”與在直線運(yùn)動(dòng)中“合外力改變速度大小”聯(lián)系起來,使學(xué)生全面理解“力是改變物體運(yùn)動(dòng)狀態(tài)的原因”的含義,再結(jié)合無論速度大小或方向改變,物體都具有加速度,使學(xué)生對(duì)“力是物體產(chǎn)生加速度的原因”有更進(jìn)一步的理解.

教學(xué)設(shè)計(jì)方案

向心力、向心加速度

教學(xué)重點(diǎn):向心力、向心加速度的概念及公式.

教學(xué)難點(diǎn):向心力概念的引入

主要設(shè)計(jì):

一、向心力:

(一)讓學(xué)生討論汽車急轉(zhuǎn)彎時(shí)乘客的感覺.

(二)展示圖片1.鏈球做圓周運(yùn)動(dòng)需要向心力.〔全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修定本·必修)物理.第一冊(cè)98頁〕

(三)演示實(shí)驗(yàn):做圓周運(yùn)動(dòng)的小球受到繩的拉力作用.

(四)讓學(xué)生討論,猜測(cè)向心力大小可能與哪些因素有關(guān)?如何探究?引導(dǎo)學(xué)生用“控制變量法”進(jìn)行探索性實(shí)驗(yàn).(用向心力演示器實(shí)驗(yàn))

演示1:半徑r和角速度一定時(shí),向心力與質(zhì)量m的關(guān)系.

演示2:質(zhì)量m和角速度一定時(shí),向心力與半徑r的關(guān)系.

演示3:質(zhì)量m和半徑r一定時(shí),向心力與角速度的關(guān)系.

給出進(jìn)而得在.

(五)討論向心力與半徑的關(guān)系:

向心力究竟與半徑成正比還是反比?提醒學(xué)生注意數(shù)學(xué)中的正比例函數(shù)中的k應(yīng)為常數(shù).因此,若m、為常數(shù)據(jù)知與r成正比;若m、v為常數(shù),據(jù)可知與r成反比,若無特殊條件,不能說向心力與半徑r成正比還是成反比.

二、向心加速度:

(一)根據(jù)牛頓第二定律

得:

(二)討論勻速圓周運(yùn)動(dòng)中各個(gè)物理量是否為恒量:

vTf

探究活動(dòng)

感受向心力

在一根結(jié)實(shí)的細(xì)繩的一端拴一個(gè)橡皮塞或其他小物體,掄動(dòng)細(xì)繩,使小物體做圓周運(yùn)動(dòng)(如圖).依次改變轉(zhuǎn)動(dòng)的角速度、半徑和小物體的質(zhì)量.

向心加速度范文第2篇

速度等概念總是辨析不清,本文從三個(gè)方面分析了這幾個(gè)加速度的產(chǎn)生以及意義,可以幫助學(xué)生較好地掌握這幾個(gè)加速度。

關(guān)鍵詞:衛(wèi)星運(yùn)動(dòng);加速度;向心加速度;軌道;重力加速度。

【中圖分類號(hào)】G632

學(xué)過萬有引力定律之后,關(guān)于天體與衛(wèi)星運(yùn)動(dòng)問題中,學(xué)生對(duì)衛(wèi)星運(yùn)動(dòng)的加速度、向心加速度以及衛(wèi)星所在軌道的重力加速度等概念總是辨析不清,而這個(gè)問題又時(shí)常在高考中出現(xiàn)。教學(xué)中,我是這樣引導(dǎo)學(xué)生分析和理解的:

一、 從牛頓運(yùn)動(dòng)定律與運(yùn)動(dòng)的關(guān)系上理解衛(wèi)星的運(yùn)動(dòng)加速度

牛頓第二定律指出,物體加速度的大小跟作用力成正比,跟物體的質(zhì)量成反比,加速度的方向跟作用力的方向相同。即:

F=ma

這里"物體加速度"是指物體的實(shí)際運(yùn)動(dòng)加速度,"作用力"是指物體所受的合外力。絕大多數(shù)學(xué)生對(duì)牛頓第二定律是理解的,因此,分析衛(wèi)星運(yùn)動(dòng)加速度(某位置)就從衛(wèi)星受力著手。如:

T1. 發(fā)射地球同步衛(wèi)星時(shí),先將衛(wèi)星發(fā)射至近地圓軌道1,然后經(jīng)點(diǎn)火加速后,使其沿橢圓軌道2運(yùn)行,

最后再次點(diǎn)火,將衛(wèi)星送入同步軌道3。

軌道1、2相切于Q點(diǎn),軌道2、3相切

于P點(diǎn),如圖1示。則當(dāng)衛(wèi)星分別在1、

2、3軌道上正常運(yùn)行時(shí),以下說法正確 如圖1

的是( B )

A、衛(wèi)星在軌道3上的速率大于在軌道1上的速率

B、衛(wèi)星在軌道3上的機(jī)械能大于在軌道1上的機(jī)械能

C、衛(wèi)星在軌道1上經(jīng)過Q點(diǎn)時(shí)的加速度大于它在軌道2上經(jīng)過Q 點(diǎn)時(shí)的加速度

D、衛(wèi)星在軌道2上經(jīng)過P點(diǎn)時(shí)的速度大于它在軌道3上經(jīng)過P點(diǎn)時(shí)的速度

其中選項(xiàng)C的分析:衛(wèi)星在軌道1上經(jīng)過Q點(diǎn)時(shí)加速度a1和它在軌道2上經(jīng)過Q點(diǎn)時(shí)的加速度a2都是由地球的萬有引力產(chǎn)生的,即:

G=m

衛(wèi)星加速度:=== G

即:a1和a2大小、方向都相同。故選項(xiàng)C錯(cuò)誤。

二、 從萬有引力定律與重力的關(guān)系上理解衛(wèi)星軌道處的"重力加速度"

T2.地球赤道上有一物體隨地球的自轉(zhuǎn)而做圓周運(yùn)動(dòng),所受的向心力為F1,向心加速度為a1,線速度為v1,角速度為ω1;繞地球表面附近做圓周運(yùn)動(dòng)的人造衛(wèi)星(高度忽略)所受的向心力為F2,向心加速度為a2,線速度為v2,角速度為ω3;地球同步衛(wèi)星所受的向心力為F3,向心加速度為a3,線速度為v3,角速度為ω3。地球表面重力加速度為g,第一宇宙速度為v。假設(shè)三者質(zhì)量相等,則(D)

A、F1=F2>F3 B、a1= a2=g>a3

C、v1=v2=v>v3 D、ω1=ω3

其中選項(xiàng)B的分析:由于地球的自轉(zhuǎn),處在地球表面的物體隨地球自轉(zhuǎn)具有向心加速度a1,在赤道上有:

G=ma1+mg

=F1+mg...........................①

繞地球表面運(yùn)行的衛(wèi)星,有:

G=ma2=mg′=..................②

比較①②式可知:a2>a1≠g

討論:如果忽略地球自轉(zhuǎn),則有:g′=g

根據(jù)牛頓第二定律,繞地球做勻速圓周運(yùn)動(dòng)的衛(wèi)星所在軌道處(r=R+h)的重力加速度gr、向心加速度a心和運(yùn)動(dòng)加速度a應(yīng)滿足:

G=mgr=ma心=ma

即有g(shù)r=a心=a。所以a2>a1≠g>a3。故選項(xiàng)B錯(cuò)誤。

三、 從牛頓運(yùn)動(dòng)定律與圓周運(yùn)動(dòng)的關(guān)系上理解衛(wèi)星的"向心加速度"

先看單擺在運(yùn)動(dòng)中的"加速度"分析:當(dāng)細(xì)繩與豎直方向夾角為θ時(shí),小球的加速度a應(yīng)為:

==

小球的向心加速度 a心應(yīng)為:

= 如圖2

小球的切向加速度a切應(yīng)為:

=

且:a=a心+a切

T3.如圖3示,A為靜止于地球赤道上的物體,B為繞地球做橢圓軌道運(yùn)行的衛(wèi)星,C為繞地球做圓周運(yùn)動(dòng)的衛(wèi)星,P為B、C兩衛(wèi)星軌道的交點(diǎn)。已知A、B、C繞地心運(yùn)動(dòng)的周期相同。相對(duì)地心,下列說法中正確的是(C)

A、物體A和衛(wèi)星C具有相同大小的加速度

B、衛(wèi)星C的運(yùn)行速度小于物體A的速度

C、可能出現(xiàn)在每天的某一時(shí)刻衛(wèi)星B在A的正上方的情況

D、衛(wèi)星B在P點(diǎn)運(yùn)行的加速度

大于衛(wèi)星C的加速度

其中選項(xiàng)A、D的分析:當(dāng)衛(wèi) 如圖3

星過P點(diǎn)時(shí),不任是B衛(wèi)星還是C衛(wèi)星,由牛頓第二定律可知,其運(yùn)動(dòng)加速度都是由萬有引力產(chǎn)生,故:

aBP=aCP==G=gr

向心加速度范文第3篇

1.單擺的周期公式

首先,根據(jù)單擺的振動(dòng)條件,我們知道其回復(fù)力F=mgsinθ≈mg,它在振動(dòng)方向的加速度a==x,方向與位移x方向相反,當(dāng)擺角很小時(shí),AOB可以近似為直線,設(shè)該振動(dòng)的振幅為A,周期為T。由實(shí)驗(yàn)可知單擺的振動(dòng)圖像是正余弦曲線,根據(jù)圖像可寫出其位移公式為x=Asint?,F(xiàn)在以AOB為直徑畫一個(gè)圓,其半徑就是A。使一個(gè)物體C在圓上做勻速圓周運(yùn)動(dòng),且其周期與單擺周期相等,設(shè)為T。若擺球與物體同時(shí)從O點(diǎn)開始運(yùn)動(dòng),則經(jīng)過時(shí)間t,單擺運(yùn)動(dòng)到點(diǎn)D,位移為x=Asint,此時(shí)圓周上物體轉(zhuǎn)過角度θ=ωt運(yùn)動(dòng)到點(diǎn)D′,它在水平方向的位移分量x′=Asinωt=Asint。這說明物體C與擺球在水平方向的運(yùn)動(dòng)規(guī)律完全相同,即位移、速度、加速度都相同。因擺球的加速度a==x,C的加速度為向心加速度a=ωr=ωA,在水平方向的加速度分量為a′=asinωt=ωAsint=a=Asint,因此有ω==,即T=2π。

2.正弦交流電的有效值

交流電的有效值是根據(jù)電流的熱效應(yīng)來定義的,即讓交流電和直流電通過同一電阻,若在相等時(shí)間內(nèi)產(chǎn)生的熱量相等,那么該交流電的有效值就與直流電的數(shù)值相等。假如讓一直流電與交流電通過相同的電阻,現(xiàn)在計(jì)算在一個(gè)交流電的周期T內(nèi)產(chǎn)生的熱量Q。直流電產(chǎn)生的熱量Q=IRT,設(shè)交流的瞬時(shí)值為i=Isinωt,則其瞬時(shí)功率p=iR=IsinωtR=I(1-cos2ωt)R=IR-Icos2ωtR。

由上式可知,交流電的瞬時(shí)功率等于兩項(xiàng)之和,第一項(xiàng)不變,第二項(xiàng)在一個(gè)周期內(nèi)有時(shí)為正,有時(shí)為負(fù),一個(gè)周期內(nèi)的平均值為0,因此一個(gè)周期內(nèi)的平均功率=IR,又=P=IR=IR,故I=I。

3.向心加速度的公式

向心加速度公式a=是高中物理中非常重要的一個(gè)公式,課本上都采用求矢量極限的思路進(jìn)行證明,該方法可以使學(xué)生感受到數(shù)學(xué)極限思想在物理學(xué)習(xí)中的重要性,同時(shí)也體現(xiàn)出加速度定義中的矢量性,是一種基本的方法。下面我們介紹一種比較有趣的特殊證明方法。

如圖1,小球以o為圓心做勻速圓周運(yùn)動(dòng),在一個(gè)周期中的位置矢量r和速度矢量v如圖1所示,即任一時(shí)刻速度與位移垂直,可得標(biāo)量關(guān)系v=。

在這個(gè)過程中,速度矢量v也隨小球轉(zhuǎn)了一圈,如圖2所示,且任一時(shí)刻加速度與速度也垂直,v是r對(duì)t的變化率,a是v對(duì)t的變化率,v與r之間的關(guān)系和a與v之間的關(guān)系應(yīng)該具有同一形式,即a=,由上面兩式消去T可得a===。

向心加速度范文第4篇

Abstract: By using the observation experiment and mathematical method, the paper presents the uniform circular motion centripetal force formula derivation methods for helping people know, understand, and apply uniform circular motion centripetal force.

關(guān)鍵詞: 勻速圓周運(yùn)動(dòng);向心力公式;方法

Key words: uniform circular motion;centripetal force formula;method

中圖分類號(hào):G642 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-4311(2012)31-0251-04

0 引言

勻速圓周運(yùn)動(dòng)是自然界、工程技術(shù)和日常生活中最常見的曲線運(yùn)動(dòng),作勻速圓周運(yùn)動(dòng)的物體始終受到向心力的作用。研究勻速圓周運(yùn)動(dòng)向心力,是解決眾多描述勻速圓周運(yùn)動(dòng)物理量中問題的核心,是分析和運(yùn)用勻速圓周運(yùn)動(dòng)規(guī)律的關(guān)鍵。

1 勻速圓周運(yùn)動(dòng)的運(yùn)動(dòng)條件

質(zhì)點(diǎn)沿圓周運(yùn)動(dòng),如果在任意相等的時(shí)間里通過的圓弧長(zhǎng)度都相等,這種運(yùn)動(dòng)稱為“勻速圓周運(yùn)動(dòng)”,也叫做“勻速率圓周運(yùn)動(dòng)”。物體作勻速圓周運(yùn)動(dòng)時(shí),可以保持速度的恒定,但是速度的方向在不斷變化,所以勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)。又因?yàn)槲矬w作勻速圓周運(yùn)動(dòng)時(shí)的向心加速度是恒定的,但方向時(shí)刻改變,所以勻速圓周運(yùn)動(dòng)是變加速運(yùn)動(dòng)?!皠蛩賵A周運(yùn)動(dòng)”中的“勻速”只表示速率的恒定。做勻速圓周運(yùn)動(dòng)的物體還是存在加速度的,而且加速度在時(shí)刻發(fā)生著變化,因其加速度方向始終指向圓心,并且時(shí)刻在發(fā)生著變化,它的運(yùn)動(dòng)軌跡是一個(gè)圓,所以勻速圓周運(yùn)動(dòng)是變加速曲線運(yùn)動(dòng)。

物體作圓周運(yùn)動(dòng)要滿足兩個(gè)條件:一是要有初速度;二是受到一個(gè)大小不變、方向與速度垂直的指向圓心的力,即向心力。

2 勻速圓周運(yùn)動(dòng)的向心力

我們知道力是產(chǎn)生加速度的原因。在勻速圓周運(yùn)動(dòng)中物體所受到的大小不變、方向與速度垂直因而是指向圓心的力,也就是向心力,這個(gè)力能夠產(chǎn)生向心加速度。

向心力的得名源于力的效果,這種類型的力與重力、彈力、摩擦力是有區(qū)別的。對(duì)圓周運(yùn)動(dòng)的質(zhì)點(diǎn)受力進(jìn)行分析時(shí),一定不要在物體的相互作用力(重力、彈力、摩擦力、萬有引力)之外多其它的向心力。任何一個(gè)力,或者幾個(gè)力的合力,或者某一個(gè)力的某個(gè)分力,只要其效果是使物體做勻速圓周運(yùn)動(dòng)的,都可以作為向心力。

我們一般要從以下幾點(diǎn)來分析向心力的來源:第一步,確定研究對(duì)象運(yùn)動(dòng)的軌道平面和圓心的位置,第二步,分析圓周運(yùn)動(dòng)物體所受的力,畫好受力圖,第三步,找出這些力指向圓心方向的合外力,這就是向心力。

3 勻速圓周運(yùn)動(dòng)向心力公式的推導(dǎo)

3.1 用實(shí)驗(yàn)驗(yàn)證向心力公式 測(cè)定勻速圓周運(yùn)動(dòng)向心力的實(shí)驗(yàn)儀器種類非常多,它們不僅能定性驗(yàn)證,而且也能定量測(cè)定,驗(yàn)證的基本步驟是:

首先,在確定轉(zhuǎn)速、圓周半徑都恒定的前提下,驗(yàn)證向心力與質(zhì)量是不是正比關(guān)系。用來作對(duì)比實(shí)驗(yàn)的兩物體要經(jīng)過嚴(yán)格配重,并且用天平測(cè)量出兩球的質(zhì)量一個(gè)是另一個(gè)的一半,實(shí)驗(yàn)顯示:測(cè)力計(jì)所示的向心力隨著作圓周運(yùn)動(dòng)物體質(zhì)量的加倍而加倍,這就證明了向心力與物體質(zhì)量的正比關(guān)系。其次,在保持質(zhì)量、運(yùn)動(dòng)半徑都恒定的情況下。由于角速度與轉(zhuǎn)速是正比關(guān)系,所以我們只需要驗(yàn)證向心力與轉(zhuǎn)速的平方是不是正比關(guān)系。實(shí)驗(yàn)時(shí),轉(zhuǎn)速增加到2倍,從測(cè)力計(jì)上可以看出,在允許的誤差范圍內(nèi),向心力增加到4倍。驗(yàn)證了向心力跟角速度的平方成正比。最后,在保持質(zhì)量、角速度(或轉(zhuǎn)速)都不變的前提下,驗(yàn)證物體進(jìn)行圓周運(yùn)動(dòng)時(shí)的向心力與圓周的半徑是不是正比關(guān)系。實(shí)驗(yàn)時(shí),使運(yùn)動(dòng)半徑增加到2倍,轉(zhuǎn)動(dòng)后,從測(cè)力計(jì)上可以看出向心力也增加到2倍。說明向心力與半徑成正比。

在實(shí)驗(yàn)過程中,必須明確如下幾個(gè)問題:

①認(rèn)準(zhǔn)研究對(duì)象。我們要研究的主要是做圓周運(yùn)動(dòng)的物體,在眾多的部件中要認(rèn)準(zhǔn)研究對(duì)象,仔細(xì)觀察其運(yùn)動(dòng)情況,集中解決主要矛盾。

②搞清楚向心力的來源。要根據(jù)所選用的實(shí)驗(yàn)儀器,根據(jù)分析向心力來源的步驟,考察向心力的來源,同時(shí)要判斷摩擦力是否相對(duì)較小,可以忽略不計(jì)。

③測(cè)量向心力準(zhǔn)確數(shù)值的方法。根據(jù)實(shí)驗(yàn)儀器的設(shè)計(jì)原理,當(dāng)測(cè)定物體受到作用力時(shí),作用力(與向心力是一對(duì)作用力與反作用力)通過一定的鏈接對(duì)測(cè)力計(jì)發(fā)生作用,所以測(cè)力計(jì)上的指示刻度可以反映向心力的大小,得出向心力的準(zhǔn)確值。

④對(duì)向心力測(cè)定實(shí)驗(yàn)的進(jìn)一步說明:實(shí)驗(yàn)法除了能夠定性驗(yàn)證向心力公式F=mrω2的正確性外,還可以運(yùn)用定量分析方法,得到這個(gè)公式。根據(jù)之前的相關(guān)論述,不難定性驗(yàn)證F與m、r、ω之間的正比關(guān)系,得到公式F=Kmrω2(K表示比例系數(shù)),但是要想通過定量分析得到這個(gè)公式,還要更深入的了解一下儀器,清楚的了解各步實(shí)驗(yàn)的數(shù)量關(guān)系。依據(jù)實(shí)測(cè)的一組數(shù)據(jù),我們可以發(fā)現(xiàn),當(dāng)F、ω、r、m的單位為牛頓、弧度、米或千克時(shí),比例常數(shù)K=l,即F=mrω2成立。

⑤關(guān)于F=mrω2與F=mv2/r的物理含義。之前的驗(yàn)證可得到公式F=mrω2的正確性,通過ω=v/r不難得到公式F=mrω2。根據(jù)數(shù)學(xué)原理,兩式完全等效,但從表達(dá)形式上看,F(xiàn)與r在兩式中卻是完全相反的比例關(guān)系。公式F= mrω2可以說明若ω恒定,F(xiàn)與r是正比關(guān)系;F=mv2/r說明當(dāng)v恒定時(shí),F(xiàn)與r是反比的關(guān)系。我們可以用以下方法驗(yàn)證公式中F與r的反比關(guān)系:

將皮帶套在中間一對(duì)轉(zhuǎn)輪上,拿來質(zhì)量一樣的兩個(gè)鋼球,一個(gè)放在小寶塔輪A上的滑槽內(nèi),另一個(gè)放在大寶塔輪B上的外沿滑槽內(nèi),不難得到這樣的數(shù)據(jù): mA=mB、rB=2rA

經(jīng)計(jì)算,可得到各自的線速度:

VA=2πrA/TA,VB=2πrB/TB=2πrA/2TA=VA

通過實(shí)驗(yàn)得到的結(jié)論是FB=FA/2。據(jù)此驗(yàn)證了若V恒定,F(xiàn)與r是反比關(guān)系。

3.2 根據(jù)向心加速度和牛頓第二定律進(jìn)行推導(dǎo) 這類方法的關(guān)鍵是推導(dǎo)出向心加速度,對(duì)照牛頓第二定律可直接寫出向心力公式F=m■或F=mr?棕2,因此,下面介紹幾種向心加速度的推導(dǎo)方法。

3.2.1 矢量合成法 如圖所示,物體自半徑為r的圓周A勻速率運(yùn)動(dòng)至B,所經(jīng)時(shí)間為?駐t,若物體在A、B點(diǎn)的速率為發(fā)VA=VB=v,則其速度的增量?駐v=vB-vA=vB+(-vA),?駐θ=θ,由平行四邊形法則作出其矢量圖。由余弦定理可得

?駐V=■

=■

=v■

由三角公式有sin■=■

所以?駐V=2vsin■

又■■=1所以 ■sin■=■

故?駐V=2vsin■=2v·■=v?茲

而a=■■=■■

加速度a的方向可以從圖中看出,當(dāng)?駐t趨近于零時(shí),?駐θ也趨近于零,即θ趨近于零。

a=■■=■■=■■=v?棕=■

另由圖可知:?琢=■

所以■?琢=■■=90°

所以?駐V趨于與VB垂直。所以在極限情況下,加速度a的方向垂直于速度V的方向,且沿著半徑指向圓心,因此這個(gè)加速度也就是向心加速度。

a=■■=■■=■■=v?棕=■=r?棕2

3.2.2 運(yùn)動(dòng)合成 眾所周知,根據(jù)物體作圓周運(yùn)動(dòng)的條件設(shè)想,若沒有初速度則物體將向著圓心方向作勻加速運(yùn)動(dòng).若沒有向心力,則物體將沿初速度方向作勻速運(yùn)動(dòng).可見圓周運(yùn)動(dòng)應(yīng)當(dāng)是沿圓心方向的勻加速直線運(yùn)動(dòng)和沿初速度方向的勻速運(yùn)動(dòng)的合運(yùn)動(dòng)。如圖所示,物體自A至B的運(yùn)動(dòng),可看成先由A以速度v勻速運(yùn)動(dòng)至C,再由C以加速度a勻加速運(yùn)動(dòng)至B,由圖可知r2+■■=(r+■)■

整理得■■=2r·■+■■

當(dāng)?駐t0時(shí),■■是無窮小量,故■■■=2r■

因?yàn)椤?v·?駐t ■=■?琢?駐t2

于是 v2?駐t2=2r·■a?駐t2

即a=■

當(dāng)?駐t0時(shí),■方向的運(yùn)動(dòng)可以忽略。故物體只有指向圓心方向的加速度a。其大小為a=■=r?棕

3.2.3 位移合成法 如圖所示,設(shè)物體自A點(diǎn)經(jīng)?駐t沿圓周運(yùn)動(dòng)至B,其位移■可看成是切向位移s1和法向位移s2的矢量和。由以上分析可知,其法向運(yùn)動(dòng)為勻加速運(yùn)動(dòng),設(shè)其加速度a,則有s2=■a?駐t2

由圖知:ACB∽ADB,故有AC∶AB=AB∶AD,即

AC=■

當(dāng)?駐t0時(shí),AB=s1=v?駐t,AC=s2=■a?駐t2

于是,■a?駐t2=■

故a=■ 即a=■=r?棕

3.2.4 類比法 如圖,設(shè)有一位置矢量r繞o點(diǎn)旋轉(zhuǎn),其矢端由A至B時(shí)發(fā)生的位移為?駐s,若所經(jīng)時(shí)間為?駐t,則在此段時(shí)間內(nèi)的平均速率V=■,顯然這個(gè)速率描述的是位置矢量矢端的運(yùn)動(dòng)速率,當(dāng)?駐t趨近于零時(shí),這個(gè)平均速率就表示位置矢量的矢端在某一時(shí)刻的即時(shí)速率,如果是勻角速的旋轉(zhuǎn),則其矢端的運(yùn)動(dòng)也是勻速率的,易知其速率v=■(t為旋轉(zhuǎn)周期),從而■=■

再如圖a是一物體由A至B過程中,每轉(zhuǎn)過1/8圓周,速度變化的情況?,F(xiàn)將其速度平移至圖b中,容易看出圖b和圖a相類似,所不同的是圖a表示的是位置矢量的旋轉(zhuǎn),而圖b則是速度矢量的旋轉(zhuǎn),而加速度是速度的變化率,即a=■

由圖b可知,這個(gè)速度變化率其實(shí)就是速度矢量矢端的旋轉(zhuǎn)速率,其旋轉(zhuǎn)半徑就是速率v的大小,故有a=■=■·v=■

比較圖a和圖b,可以看出當(dāng)?駐t0時(shí)?駐v的方向和?駐s的方向相垂直。故加速度的方向和速度方向相垂直。

3.2.5 參數(shù)方程求導(dǎo)法 以物體所作的勻速圓周運(yùn)動(dòng)的運(yùn)動(dòng)圓圓心為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系。設(shè)角速度為ω,設(shè)物體運(yùn)動(dòng)圓的參數(shù)方程為x=rcos?棕ty=rsin?棕t(t為參數(shù)),則當(dāng)時(shí)間為t時(shí),作勻速圓周運(yùn)動(dòng)的物體沿x和y軸的位移為sx=rcos?棕tsy=rsin?棕t。

求導(dǎo)得其沿x和y軸的速度分量與時(shí)間關(guān)系為

v■=s■■=(rcos?棕t)′=-r?棕sin?棕tv■=s■■=(rsin?棕t)′=r?棕cos?棕t

即vx=-r?棕sin?棕tvy=r?棕cos?棕t

根據(jù)速度的導(dǎo)數(shù)即為加速度,在對(duì)上式求導(dǎo),得加速度沿x,y軸分量與時(shí)間關(guān)系為

a■=v■■=(-r?棕sin?棕t)′=-r?棕2cos?棕ta■=v■■=(-r?棕sin?棕t)′=-r?棕2sin?棕t

即a■=-r?棕2cos?棕ta■=-r?棕2sin?棕t

因此,a=r?棕2

3.3 微積分法 建立如圖所示平面直角坐標(biāo)系,其中物體做圓周運(yùn)動(dòng)的軌跡方程為x2+y2=r2,即圓周半徑為r。設(shè)t為所經(jīng)歷的時(shí)間,當(dāng)t=0時(shí),物于坐標(biāo)(r,0)點(diǎn),并且逆時(shí)針運(yùn)動(dòng)。設(shè)勻速圓周運(yùn)動(dòng)的速率為v,設(shè)物體質(zhì)量為m,受到的向心力為F。當(dāng)時(shí)間為t時(shí),物體和圓心的連線與x軸正方向的夾角為θ,設(shè)周期為T,則?茲=?棕t=■t

在x軸方向,物體所受的分力為Fx=-Fcos■t

所以,x方向的加速度為ax=■=-■cos■t

為兩邊對(duì)t求積分得

vx=■-■cos■dt=-■■cos■dt

=-■·■■cos■d■t=-■sin■+Cx

得其中,Cx與t無關(guān),由已知條件得,當(dāng)t=0時(shí),vx=0,代入上式得Cx=0

所以,當(dāng)時(shí)間為t時(shí),x軸方向上的速度分量為

vx=-■sin■

同理,在y軸方向,物體所受到的分力為Fy=Fsin■t

所以,物體在y軸方向的加速度為ay=■=■sin■t

兩邊對(duì)t求積分得

vy=■■sin■dt=■■sin■dt

=■·■■sin■d■t=-■cos■+C

其中C與t無關(guān),由已知條件得,當(dāng)t=0時(shí),vy=v,代入上式得C=■+v

vy=-■cos■+■+v

v2=v■■+v■■

v2=■sin2■+(-■cos■+■+v)2

經(jīng)化簡(jiǎn)可得■+v=cos■(■+v),即(■+v)·(1-cos■)=0

由于t為變量,1-cos■不可能恒為0

所以只能■+v=0

移項(xiàng),兩邊求平方得v2=■,由于T=■

代入得v2=■

化簡(jiǎn)可得F=■

參考文獻(xiàn):

[1]邵長(zhǎng)泰,張協(xié)成.物理(基礎(chǔ)版)上冊(cè)[M].高等教育出版社,2005年6月.

[2]李遒伯.物理學(xué)[M].高等教育出版社,2004年3月.

向心加速度范文第5篇

關(guān)鍵詞:萬有引力 天體圓周運(yùn)動(dòng) 概念混淆 易錯(cuò)

我們?cè)趯W(xué)習(xí)《圓周運(yùn)動(dòng)》時(shí)得出了如下結(jié)論:v=ω·r,α=,α=ω2·r;在學(xué)習(xí)萬有引力定律在天文學(xué)上應(yīng)用時(shí),知道由萬有引力提供天體作圓周運(yùn)動(dòng)所需的向心力,即F萬=F向,則可得

可很多學(xué)生由于不能熟練掌握這些推導(dǎo)公式,沒有注意它們成立的條件而導(dǎo)致錯(cuò)解,現(xiàn)將幾個(gè)典型問題歸納如下:

1、不能明辨地球表面的物體與繞地球運(yùn)行的物體

例1 地球同步衛(wèi)星離地心距離為r,環(huán)繞速度大小為v1,加速度大小為a1,地球赤道上的物體隨地球自轉(zhuǎn)的心加速度大小為a2,第一宙宇速度為v2,地球半徑為R,則下列關(guān)系式正確的是

錯(cuò)解 對(duì)地球同步衛(wèi)星與地球赤道上物體,由萬有引力提供向心力產(chǎn)生向心加速度,有

所以 故B正確。

同理對(duì)同步衛(wèi)星 又第一宇宙速度

所以 故D正確。

正確分析 上述對(duì)v1、v2的分析是正確的,而對(duì)a1、a2的分析是錯(cuò)誤的,隨地球自轉(zhuǎn)的物體不是地球的衛(wèi)星,不滿足

關(guān)系式,它與地球的同步衛(wèi)星有相同的角速度、周期。

設(shè)地球自轉(zhuǎn)角速度為ω,則 A正確,故正確選項(xiàng)為A、D。

例2 已知同步衛(wèi)星距地面的高度H,地球半徑為R,同步衛(wèi)星的運(yùn)動(dòng)速度為v1,同步衛(wèi)星的加速度為a1,靜止于地球赤道上的物體隨地球自轉(zhuǎn)的加速度為a2,地球的第一宇宙速度為v2,則:

錯(cuò)解 由公式可得加速度與運(yùn)行半徑的平方成反比,故選A,由v=ω·r可得線速度與運(yùn)行半徑成正比,故選D。

正確分析 由于式 是萬有引力全部用來提供向心力時(shí)得到的,而赤道上的物體所受萬有引力只有部分來提供向心力,不可用該式來計(jì)算加速度之比,由于同步衛(wèi)星與地球自轉(zhuǎn)角速度相同,應(yīng)由式a=ω2·r來比較,可得答案B正確,錯(cuò)選D答案是認(rèn)為繞地球表面運(yùn)動(dòng)的角速度就是地球自轉(zhuǎn)角速度,而此情況時(shí)萬有引力與同步衛(wèi)星一樣也是全部用來提供向心力,應(yīng)式 來計(jì)算即可得應(yīng)選答案C。

2、不能正確區(qū)別星體的運(yùn)行向心加速度與星體表面的重力加速度

例 一衛(wèi)星繞某行星做勻速圓周運(yùn)動(dòng),已知行星表面的重力加速度為g行,行星的質(zhì)量M與衛(wèi)星的質(zhì)量m之比為 行星的半徑R行與衛(wèi)星的半徑R衛(wèi)之比 行星與衛(wèi)星間的距離r與行星的半徑之比為 設(shè)衛(wèi)星表面的重力加速度為g衛(wèi),求衛(wèi)星表面的重力加速度與行星表面的重力加速度之比(用a、b、c表示)

錯(cuò)解 衛(wèi)星繞行星運(yùn)行:由

所以

正確分析 上述分析中 是行星對(duì)衛(wèi)星的萬有引力,此力充當(dāng)衛(wèi)星的向心力,g衛(wèi)應(yīng)是衛(wèi)星運(yùn)行的向心加速度,而非衛(wèi)星表面的重力加速度。對(duì)衛(wèi)星、行星分別由黃金代換式有

3、不能正確區(qū)別 中r的含義帶來的錯(cuò)解

例1 發(fā)射地球同步衛(wèi)星時(shí),先將衛(wèi)星發(fā)射至近地軌道1,然后經(jīng)點(diǎn)火,使其沿橢圓軌道2運(yùn)行,最后再次點(diǎn)火,將衛(wèi)星送入同步圓軌道3,軌道1、2相切于Q點(diǎn),軌道2、3相切于P點(diǎn),如圖1所示,則當(dāng)衛(wèi)星分別在1、2、3軌道上正常運(yùn)行時(shí),下列說法正確的是

A、衛(wèi)星在軌道3上速率大于在軌道1上的速率

B、衛(wèi)星在軌道3上的角速度小于在軌道1上的角速度

C、衛(wèi)星在軌道1上經(jīng)過Q點(diǎn)時(shí)的加速度大于它在軌道2上經(jīng)過Q點(diǎn)的加速度

D、衛(wèi)星在軌道2上經(jīng)過P點(diǎn)時(shí)的加速度等于它在軌道3上經(jīng)過P點(diǎn)時(shí)的加速度

錯(cuò)解 在軌道1與軌道3上衛(wèi)星做勻速圓周運(yùn)動(dòng),根據(jù)萬有引力提供向心力即 故A錯(cuò),B對(duì),據(jù)題意,衛(wèi)星在軌道1上運(yùn)行經(jīng)過Q點(diǎn)時(shí)點(diǎn)火加速進(jìn)入2軌道,因此在軌道2運(yùn)行經(jīng)過Q點(diǎn)的速率大于在軌道1運(yùn)行經(jīng)過Q點(diǎn)速率,而衛(wèi)星的運(yùn)行半徑相同,由a=v2/r知C正確,同理分析知D錯(cuò)。

正確分析 上述對(duì)A、B選項(xiàng)分析正確;對(duì)C、D選項(xiàng)分析錯(cuò)誤,原因是沒有正確理解關(guān)系式 與中“r”的含義,前者應(yīng)是衛(wèi)星到地球距離,而后者應(yīng)是衛(wèi)星軌道的曲率半徑,衛(wèi)星沿圓軌道1、3運(yùn)行時(shí),二者是一致的,而對(duì)橢圓軌道則不同了,由于橢圓的曲率半徑中學(xué)數(shù)學(xué)不討論,在這里可由牛頓第二定律來討論。

衛(wèi)星在不同軌道運(yùn)行,均由萬有引力提供向心力,由

知,在軌道1、2經(jīng)過Q點(diǎn)時(shí),地球與衛(wèi)星的距離r相等,故向心加速度相等,所以C錯(cuò),D對(duì)。

例2 如圖所示,同步衛(wèi)星在赤道上空的同步軌道上定位以后,由于受到太陽、月球及其它天體的引力作用影響,會(huì)產(chǎn)生不同方向的漂移運(yùn)動(dòng)而偏離原來的位置,當(dāng)偏離達(dá)到一定程度,就要發(fā)動(dòng)衛(wèi)星上的小發(fā)動(dòng)機(jī)進(jìn)行修正,圖中A為同步軌道,B和C為兩個(gè)已知偏離同步軌道但軌道仍在赤道平面內(nèi)的衛(wèi)星,要使它們回到同步軌道上,下述方法正確的有:

A、開動(dòng)B的小發(fā)動(dòng)機(jī)向前噴氣,使B適當(dāng)減速;

B、開動(dòng)B的小發(fā)動(dòng)機(jī)向后噴氣,使B適當(dāng)加速;

C、開動(dòng)C的小發(fā)動(dòng)機(jī)向前噴氣,使C適當(dāng)減速;

D、開動(dòng)C的小發(fā)動(dòng)機(jī)向后噴氣,使C適當(dāng)加速。

錯(cuò)解 由于軌道半徑rB大于軌道半徑rA,軌道半徑rC又小于rA,而由式可得vA

正確分析:由 確實(shí)可得vB

思考題

據(jù)國(guó)外媒體報(bào)道:2010年的某天,一顆西方某國(guó)的間諜衛(wèi)星經(jīng)過中國(guó)西北某軍事訓(xùn)練基地上空時(shí),突然“失明”近四十分鐘,據(jù)該媒體的分析,在該間諜衛(wèi)星通過此基地時(shí),一顆在同一軌道上運(yùn)行的中國(guó)反間諜衛(wèi)星向后噴出一種特殊的高分子膠狀物質(zhì),膠狀物質(zhì)附著在間諜衛(wèi)星的表面而使衛(wèi)星“失明”,膠狀物在真空中揮發(fā)后衛(wèi)星又能重新恢復(fù)工作。關(guān)于反間諜衛(wèi)星噴出膠狀物前后的運(yùn)動(dòng)情況,下列說法中正確的是

A、在噴出膠狀物前,反間諜衛(wèi)星的線速度一定大于間諜衛(wèi)星的線速度

B、在噴出膠狀物前,由于兩顆衛(wèi)星處在同一軌道上,所以兩顆衛(wèi)星的線速度大小相等

C、在反間諜衛(wèi)星噴出膠狀物后,其還可在同一軌道上繼續(xù)運(yùn)動(dòng)

D、在反間諜衛(wèi)星噴出膠狀物后,其運(yùn)行的軌道半徑一定會(huì)增大

相關(guān)期刊更多

西藏文學(xué)

省級(jí)期刊 審核時(shí)間1個(gè)月內(nèi)

西藏自治區(qū)文聯(lián)

保健醫(yī)苑

部級(jí)期刊 審核時(shí)間1個(gè)月內(nèi)

國(guó)家衛(wèi)生健康委員會(huì)

風(fēng)機(jī)技術(shù)

部級(jí)期刊 審核時(shí)間1個(gè)月內(nèi)

國(guó)家機(jī)械工業(yè)局